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Liriope spicata (Thunb.) Lour has a unique LsEPSPS structure contributing to the highest-ever-recognized natural
glyphosate tolerance. The transformed LsEPSPS confers increased glyphosate resistance to E. coli and A. thaliana.
However, the increased glyphosate-resistance level is not high enough to be of commercial value. Therefore,
LsEPSPS was subjected to error-prone PCR to screen mutant EPSPS genes capable of endowing higher resistance
levels. A mutant designated as ELs-EPSPS having five mutated amino acids (37Val, 67Asn, 277Ser, 351Gly and
422Gly) was selected for its ability to confer improved resistance to glyphosate. Expression of ELs-EPSPS in re-
combinant E. coli BL21 (DE3) strains enhanced resistance to glyphosate in comparison to both the LsEPSPS-trans-
formed and -untransformed controls. Furthermore, transgenic ELs-EPSPS A. thalianawas about 5.4 fold and 2-fold
resistance to glyphosate compared with the wild-type and the Ls-EPSPS-transgenic plants, respectively. There-
fore, the mutated ELs-EPSPS gene has potential value for has potential for the development of glyphosate-resis-
tant crops.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

Glyphosate is the most widely used nonselective herbicide in the
world [1]. It inhibits 5-enolpyruvylshikimate-3-phosphate synthase
(EPSPS, EC 2.5.1.19) in the shikimic acid pathway, an enzyme that is es-
sential for the biosynthesis of the aromatic amino acids, tryptophan,
phenylalanine and tyrosine in plants [2]. Being non selective, glyphosate
cannot be directly applied to conventional crops to control weeds.
Hence, many crops have been transgenically modified to withstand
glyphosate [3–8]. Herbicide-resistance (primarily glyphosate resis-
tance) traits have been transformed into canola (Brassica napus L.),
corn (Zea mays L.), cotton (Gossypium hirsutum L.), soybean [Glycine
max (L.) Merr.], and sugar beet (Beta vulgaris L.). Glyphosate-resistant
(GR) crops have been planted worldwide on an increasing area of
more than 180 million ha [9].

The development of glyphosate-resistant crops mainly depends on
glyphosate-resistance gene resources. A glyphosate-resistance EPSPS
gene from Agrobacterium tumefaciens strain CP4 has been successfully
used in commercial transgenic crops [10]. EPSPS of glyphosate-resistant
Eleusine indicawas recently patented [11]. Another mutant EPSPS from
Z. mays (event GA21 carrying two mutations) has been utilized to pro-
duce the first commercial varieties of glyphosate-resistant maize in
1990s [12–15]. An EPSPS of Vitis viniferamodified byDNA shuffling con-
ferred high resistance to glyphosate in transgenic A. thaliana and rice
[16]. However, there are still limited EPSPS gene sources available to
develop glyphosate-resistant commercial varieties. Therefore, identifi-
cation and cloning of additional plant-derived glyphosate-resistance
EPSPS genes will provide alternative options for developing new glyph-
osate-resistant crops and increasing the diversity of transgenic glypho-
sate-resistance technology.

Directed evolution based on error-prone polymerase chain reaction
(PCR) and DNA shuffling has become a promising new method in pro-
tein engineering. Since initially proposed by Leung in 1988 [17], error-
prone PCR has been a useful tool because of its simple operation and re-
markable results. Zhou et al. (2006) produced a glyphosate-resistant
P106L mutant of a rice (Oryza sativa) EPSPS using this technique [18].
Affinity of the P106L mutant for glyphosate and phosphoenolpyruvate
decreased about 70-fold and 4.6-fold, respectively, compared to wild-
type EPSPS [18]. We recently documented that Liriope spicata (Thunb.)
Lour has a unique EPSPS structure contributing to the highest-ever-rec-
ognized natural glyphosate tolerance [19]. However, the increased
glyphosate-tolerance level in transformed-plants was not enough to
be suitable for commercialization. In this study, we employed the
error-prone PCR technique to develop a high glyphosate-resistance
EPSPS gene from Ls-EPSPS of L. spicata.
2. Materials and methods

2.1. Error-prone PCR

Based on the previous obtained EPSPS sequence of Liriope spicata
(GenBank sequence accession: KP143747), two specific primers (EPSPS-
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F1: 5′-ATGGTGCCGGAGATCGTGCTGCAGCC-3′ and EPSPS-R1: 5′-
TTAGTGCGTTGTGAACCTCTGCAATAC-3′) were designed and used for
error-prone PCR. The reactions were carried out in 0.2 mL tubes (25 μL
per tube) in a reaction buffer containing Taq polymerase, dNTPs, dCTP,
dTTP, Mg2+, Mn2+, buffer, 0.2 μM primers and template DNA. PCR was
performed in a thermal cycler as follows: 5 min at 94 °C (1 cycle); 30 s
at 94 °C, 30 s at 50 °C, 2 min at 72 °C (30 cycles); and 10 min at 72 °C
(1 cycle). The obtained fragments were cloned into the PMD-19T vector
(Takara Code No. 6013).

2.2. Screening and identification of EPSPS genes conferring high glyphosate-
resistance

Fragments of about 1.3 kb obtained by error-prone PCR were puri-
fied and inserted into the PMD-19T vector. The resulting ligation mix-
ture was then transformed into E. coli strain DH5α (Takara Code No.
9057) and screened on LB agar plates supplemented with 100 mg L−1

ampicillin and 100 mM glyphosate. Clones surviving 100 mM glypho-
sate were inoculated in LB liquid medium for the extraction of plasmid
DNA. To identify if the obtained EPSPS genes coded for high glyphosate
resistance, the plasmids of EPSPS were transformed into DH5α again.
EPSPS genes conferring high glyphosate-resistance were further select-
ed, sequenced and analyzed.

2.3. Overexpression and identification of glyphosate resistance

DNA fragment encoding the mature protein of EPSPS was amplified
by PCR using LSEYH-F (5′-CCATGGTGCCGGAGATCGTGCTG-3′) and
LSEYH-R (5′-GAATTCTTAGTGCGTTGTGAACCTCTGCAAT-3′). The PCR
product was digested with NcoI and EcoRI, cloned into the correspond-
ing restriction sites of pET-28a (Novagen, Inc.), and confirmed by DNA
sequencing. The plasmid was then transformed to E. coli BL21 (DE3)
(Novagen, Inc.). The expressed protein was detected by discontinuous
vertical SDS-PAGE electrophoresis.

The transgenic bacteria (with PET-28a, plasmid Ls-EPSP-PET-28a or
ELs-EPSPS-PET-28a) were inoculated into liquid LB medium containing
1.0 mmol L−1 IPTG and glyphosate at increasing concentrations (0,
3000, 4500, 6000, 7500, 9000, 10,500, 12,000 and 20,000 mg ae L−1)
and shaken at 37 °C for 12 h. A strain only transformed with plasmid
PET-28a was used as a negative control. Cell concentrations were calcu-
lated by optical density (OD600) spectrophotometric measurements.

2.4. Construction of the plant expression vector and plant transformation

Construction of the plant expression vector and plant transforma-
tion was performed as previously described [20]. The PCR primers
were EPSPS9 (5′-GCTCTAGAATGGAGCAAGCGATCATGGCTAAG-3′) and
EPSPS6 (5′-GCTCTAGAGTGCGTTGTGAACCTCTGCAATAC-3′). The PCR
product was cloned into the corresponding restriction sites of pBI121
(Novagen, Inc.), digested with XbaI. Then the final constructs, NOS:
NPTII: NOS: 35S: Ls-EPSPS: β-Glu: NOS were introduced into A.
tumefaciens EHA105 (provided by National Key Laboratory of Nanjing
Agriculture University) by the freeze-thaw method [21], and subse-
quently transformed intoA. thaliana (ecotypeColumbia) by a previously
described floral dip method [20] to generate transgenic plants.

2.5. Transgenic plant selection

The seed produced by infected plants was surface sterilized and
planted in MS medium containing 50 mg L−1 kanamycin. A week
later, surviving seedlings were transferred into pots filled with growth
medium composed of vermiculite/ peat moss/ perlite (9:3:1). Leaves
from three-week old plantlets were used for transgenic molecular iden-
tification. The transgenic A. thalianaplantswere screened until homozy-
gous. The transgenic nature of the A. thaliana plants was confirmed by
PCR analysis of genomic DNA using the specific primers 35S1 (5′-
ATCCGGAAACCTCCTCGGATTCCATTGC-3′) and EPSP 6(5′-
GCTCTAGAGTGCGTTGTGAACCTCTGCAATAC-3′). DNA extraction was
according to the manufacturer's protocol (Tiangen Code: DP305). PCR
products were separated on 1% (w/v) agarose gels and quantified
using a Model Gel Doc 1000 system (Bio-Rad, USA).

2.6. Glyphosate response assay

Non-transgenic and transgenic plants were grown in pots filled with
growth medium as before in a controlled environmental chamber at
22 °C kept on a 16/8 h day/night cycle at a light intensity of
120 μmol photons m−2 s−1. Four-week-old seedlings were sprayed
with glyphosate (Roundup, Monsanto) at rates of 0, 164, 492, 984,
1640, 2460 and 3280 mg L−1 using a compressed-air tower sprayer
(PT-1, Nanjing Agricultural University) calibrated to deliver 234 L ha−1

at 0.2 MPa. Symptom development was assessed visually one week
after treatment. Percent injury was estimated based on discrete herbi-
cide injury severity (HIS) values according to Song et al., 2011:

Injury %ð Þ ¼ Σ HIS� plant numberð Þ= all plants� 5ð Þ½ � � 100

The experiments were repeated three times. Injury data was sub-
jected to ANOVA (SPSS 17.0, SPSS Institute Inc.) test and fitted to a
log-logistic regression model, Y = C + (D − C) / {1 + exp[b × ln(X /-
ED50)]}, where Y represents the HIS index of herbicide injury severity,
X is the herbicide rate. To estimate the parameters of the log-logistic re-
sponse curve, a non-linear regression routine was used with the Origin
software (Origin 8.0, Origin Lab Company). The ED50 valuewas calculat-
ed with the above regression equation. The relative resistance level was
determined by calculating the R/S ratio (ED50 for the test populationsdi-
vided by ED50 for the susceptible population).

3. Results

3.1. Screening and identification of EPSPS genes conferring high glyphosate-
resistance

E. coli DH5α strain with PMD-19T or Ls-EPSPS-PMD-19T grew well
on LB plates without glyphosate (Fig. 1A–B), but neither could survive
on 100 mM glyphosate LB (Fig. 1C–D). By error-prone PCR, the 1.3 kb
products of the EPSPS gene were amplified and sub cloned into the
pMD™19-T vector (Fig. 1E). After screening with 100 mM glyphosate,
three surviving clones were obtained (Fig. 1F) and identified by PCR
using primers for Ls-EPSPS (Fig. 1G).

The sequence and analysis of the targeted fragment determined that
it had a complete open reading frame of 1332 bpwith a 49% GC content
encoding a protein of 443 amino acid residues that was named ELs-
EPSPS. It had an ATG start codon; its deduced molecular mass was
47.04 kDawith an isoelectric point of 5.83. Nucleotide sequence analysis
found five mutated amino acids in ELs-EPSPS: Glu37Val, Asp67Asn,
Thr277Ser, Asp351Gly, and Arg422Gly (numbered according to
Amaranthus tuberculatus EPSPS) compared to Ls-EPSPS (GenBank se-
quence accession number KP143747) (Fig. 2A).

3.2. 3D structure analysis of ELs-EPSPS

To predict the effect of themutated sites of ELs-EPSPS on the unique
enzyme on glyphosate resistance, the ELs-EPSPS sequence was submit-
ted to SwissModel (http://swissmodel.expasy.org/) under the automat-
icmodelingmode. The outputwas analyzedwith Swiss-PdbViewer 4.01
and PyMOL 1.5.0.3 softwares. The pdb of the x-ray structure used was
DOI:10.2210/pdb2aay/pdb. The spatial positions of the five mutant
amino acids, 37Val, 67Asn, 277Ser, 351Gly, and 422Gly, are shown in
Fig. 2B.

Residue 37Glu is at the end loop of the 28Arg helix, which directly
interacts with the substrate S3P (Fig. 3A). Both Glu and Arg are polar
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Fig. 1. Screening and molecular identification of glyphosate resistant strains. (A) PMD-19T without glyphosate; (B) Ls-EPSPS-PMD-19T without glyphosate; (C) PMD-19T with100mM
glyphosate; (D) Ls-EPSPS-PMD-19T with 100 mM glyphosate; (E) Error-prone PCR on Ls-EPSPS; (F) Mutant Ls-EPSPS grown with 100 mM glyphosate; (G) Molecular identification of
mutant Ls-EPSPS. Note: M1, DL2000 DNA Marker (Takara, D501A).
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amino acids and there is dipole-dipole attraction between them. How-
ever, Val is a nonpolar amino acid. After mutation, the orientation
force between Val and Arg weakened, so that the hydrogen bond dis-
tance between S3P and 28Arg was shortened to 2.59 Å in ELs-EPSPS
from 2.83 Å in Ls-EPSPS (Fig. 3A).
Fig. 2. 3D analyses of ELs EPSP synthase. (A) Alignment of LS and ELs-EPSPS; (B) The 3D structu
yellow: 277Ser; green: 351Gly; blue: 422Gly); (C) The location of Asp351Gly substitution in E
Residue 422Arg is actually next to the 429Lys helix (Fig. 3B). The
429Lys H-bond stabilizes the glyphosate phosphonate or the PEP phos-
phate. Therefore, this substitution Arg422Gly might be a way to slightly
shift the H-bond toward the phosphate because Gly is smaller (Fig. 3B).
The model calculated that the hydrogen bond distance between
re of ELs-EPSPS displaying the fivemutated amino acids (magenta: 37Val; orange: 67Asn;
Ls-EPSPS (blue: A. Ls-EPSPS; magenta: ELs-EPSPS).

Image of Fig. 1
Image of Fig. 2


Fig. 3. Analysis of the three-dimensional structure of ELs-EPSP synthase by PyMOL. (A)
Location of Glu37Val substitution of ELs-EPSPS. (B) Location of Arg422Gly substitution
of ELs-EPSPS (blue: Ls-EPSPS; magenta: ELs-EPSPS).
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glyphosate and 429Lys was lengthened from 3.01 Å in Ls-EPSPS to
3.27 Å in ELs-EPSPS (Fig. 3B).

351Asp is on the surface alongwith 358Lys. After substituted by Gly,
the H-bond between S3P and 358Lys was extended by 0.2 Å due to the
much smaller 351Gly just like in the Arg422Gly substitution (Fig. 2C).
359Glu is next to 358Lys and 404Arg is on the helix adjacent to
358Lys and 359Glu. Thus the displacement of 358 Lys might be a way
to shift 359Glu and 404Arg toward glyphosate (Fig. 2C). The H bonds
between glyphosate and 359Glu and 404Arg were shortened by
0.15 Å and 0.34 Å, respectively (Fig. 2C).

Finally, 67Asp is on the turning of the second and third helix in do-
main 3 and 277Thr is on the turning of the seventh and eighth helixes
in domain 2. Both substitutions, Asp67Asn and Thr277Ser, are well
away from the active sites, withwhich they do not interact given its sur-
face exposure (Fig. 2B).

3.3. Overexpression and identification of glyphosate resistance

The construction of overexpression vectors with ELs-EPSPS genes is
shown in Fig. 4. The recombinant plasmids ELs-EPSPS-PET-28a effec-
tively expressed in E. coli BL 21 (DE3). The protein was about 47kD as
determined by discontinuous vertical SDS-PAGE electrophoresis (Fig.
4E). The recombinant strains (with ELs-EPSP-PET-28a, Ls-EPSP-PET-
28a or only PET-28a plasmid) were cultured in presence of glyphosate
at increasing concentrations and their response assessed based on
OD600 growth values then subjected to a logistic analysis. The calculated
ED50 values for the trans-ELs-EPSPS strains were 15,207 mg ae L−1,
much higher than that of the wild and trans-Ls-EPSPS types that were
6657 and 8851 mg ae L−1, respectively (Fig. 4F). Thus the ELs-EPSPS
gene conferred transformed E. coli the ability to withstand glyphosate
at higher concentrations than the other two types of strains.

3.4. Glyphosate response assay

In absence of glyphosate, growth of transgenic and wild-type A.
thaliana was similar. Glyphosate at 1640 mg ae L−1 strongly inhibited
leaf growth of both the wild-type and Ls-EPSPS-transgenic A. thaliana
(Fig. 5A–B). In contrast, leaves of ELs-EPSPS-transgenic plants only de-
veloped very slight phytotoxicity symptoms at this concentration (Fig.
5C). The logistic model provided a good description of the relationship
between injury level and glyphosate dose (Fig. 5D). The calculated
ED50 value of ELs-EPSPS-transgenic A. thaliana was 1844 mg L−1,
about 5.5 and 2.6 fold that of the wild-type and Ls-EPSPS-transgenic
plants, respectively. Therefore, ELs-EPSPS-transgenic plants were more
resistant to glyphosate than both Ls-EPSPS-transgenic and control
plants.

4. Discussion

We performed error-prone PCR on Ls-EPSPS gene and obtained one
highly glyphosate-resistantmutantwith anEPSPS carryingfivemutated
amino acids. These mutations enhanced the mutant's glyphosate-resis-
tance (GR) level likely by affecting the molecular interaction between
glyphosate and its binding site in the EPSPS enzyme. Substrate-binding
sites of EPSPS determine its affinity for glyphosate [15,22]. Amino acids
interacting with glyphosate in the cavity of the EPSPS active site have
been extensively studied and identified [23]. Thus, the mutation of
these amino acids in active site can significantly change the plant's re-
sponse to glyphosate. Amino acid mutations away from the active site
can also alter glyphosate response, such as those in the ‘hinge’ region
between two EPSPS globular domains and the helix region (second
and third) in the N-terminal domain [24,25].

Three new mutations of ELs-EPSPS, 37Val, 351Gly, and 422Gly, af-
fecting its active site cavity have been identified in our study. To better
understand the function of these amino acid substitutions, the three
mutations in this mutant were located on a structure model of ELs-
EPSPS based on the crystal structure of E. coli EPSPS (Fig. 2B). In suscep-
tible EPSPS, Pro106 adjusts the position of the 101Gly H-bond [23]; it is
likely that the Arg422Gly substitution may also allow for a similar ad-
justment for 429Lys at the end of the helix due to the much smaller
size of 422Gly (Fig. 3B). In addition, 359Glu and 404Arg that stabilize
glyphosate could well be shifted “toward” the phosphonate due to the
smaller size of 351Gly in the adjacent helix (Fig. 2C). Thus it is possible
for residues distantly located from the active site to exert indirect effects
on glyphosate/PEP binding leading to improved glyphosate resistance.
Besides the molecular size of an amino acid, its molecular polarity can
also affect the binding between glyphosate and EPSPS. The EPSPS of C.
arvensis (CaEPSPS) has a Phe96Ser (numbered according to A.
tuberculatus EPSPS but reported in the original paper as Phe101Ser
based on E. coli numbering) substitution. Phe is a nonpolar amino acid
whereas Ser is polar. This substitution could contribute to glyphosate
tolerance in C. arvensis [26]. In our study, Glu37Val substitution had op-
posite change of polarity but could still impact the affinity between the
substrate and EPSPS due to theweakened orientation force (Fig. 3A). Ul-
timately, experimental data on kinetic properties of EPSPS is required to
further characterize the glyphosate resistance conferred by ELs-EPSPS.

The development of transgenic glyphosate-tolerant crops has revo-
lutionized chemical weed control. The combination of glyphosate and
a GR crop generally provides better, simpler, cheaper and more flexible
weed management than the conventional alternatives [27,28]. The
EPSPS geneofA. tumefaciensCP4 is themostwidely used source for com-
mercially-grown transgenic GR crops [10]. An EPSPS gene originally iso-
lated from Zea mays (event GA21 carrying twomutations) was recently
used successfully to produce the first commercial glyphosate-resistant
maize cultivar [15]. Interestingly, an EPSPS gene from Eleusine indica
populations that evolved field resistance to glyphosate carries the
same mutations and was patented as a possible source for the develop-
ment of transgenic crops [11,29]. The EPSPS gene fromMalus domestica
also has been added to those with potential for commercialization [30].
A number of promising enzymes were identified through selective evo-
lution, site-directed mutagenesis, and microbial screens [30–34]. How-
ever, an increased tolerance for glyphosate in EPSPS is often

Image of Fig. 3


Fig. 4. Overexpression of ELs-EPSPS gene. (A) Amplification of Ls-EPSPS and ELs-EPSPS by PCR; (B) Double-enzyme digestion of LS-EPSPS-PMD-19T and ELs-EPSPS-PMD-19T; (C) Double-
enzyme digestion of PET-28a; (D) Recombinant vectors Ls-EPSPS-PET-28a and ELs-EPSPS-PET-28a; (E) SDS-PAGE analysis of Ls-EPSPS-PET-28a and ELs-EPSPS-PET-28a (BL21 (DE3))
induced by IPTG for 12 h; (F) Dose-response curve of transgenic BL21 (DE3) with PET-28a, Ls-EPSPS-PET-28a or ELs-EPSPS-PET-28a to increasing glyphosate doses 12 h after treatment
with parameters of the curve provided in the inserted table. Note: M1, DL2000 DNA Marker (Takara, D501A). M2, DL5000 DNA marker (Takara, 3428Q). M3, λ-Hind III digest (Takara,
3403). M4, Premixed Protein Marker (Low) (Takara, 3595Q). CK, control check.
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accompanied by a concomitant decrease in the enzyme's affinity for
PEP, resulting in decreased catalytic efficiency. Additional mutations
such as those in GA21/Eleusine restore the catalytic activity of the en-
zyme to suitable levels for commercialization.
Fig. 5. Injury response of transgenic and wild type A. thaliana to increasing glyphosate concen
plants sprayed with 1640 mg ae L−1 glyphosate at one week after application; (D) Dose-resp
parameters are given in the embedded table.
The ELs-EPSPS gene bestowed E. coli strain with 100mM glyphosate
resistance. The calculated ED50 values for the trans-ELs-EPSPS strains
were significantly higher than those of the wild and trans-Ls-EPSPS
types (Fig. 4F). Furthermore, we evaluated the potential of the ELs-
trations. Wild type (A), Ls-EPSPS-transgenic (B) and ELs-EPSPS-transgenic (C) A. thaliana
onse curve of transformed and wild type A. thaliana based on a logistic function whose

Image of Fig. 4
Image of Fig. 5
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EPSPS gene by transforming it into A. thaliana via a simple floral dip
method. The ELs-EPSPS in transgenic A. thaliana was stable and herita-
ble, as confirmed by the glyphosate response bioassay. ELs-EPSPS trans-
genic A. thaliana withstood glyphosate at substantially higher doses
(ED50 of 1844 mg ae L−1 glyphosate) than Ls-EPSPS transgenic A.
thaliana (ED50 of 899 mg ae L−1 glyphosate) and, of course, the suscep-
tible, wild type whose ED50 values was 338 mg ae L−1 glyphosate (Fig.
5D). Even when sprayed with 1640 mg L−1 glyphosate, the transgenic
newly-mutated ELs-EPSPS A. thaliana plants grew almost normally
(Fig. 5C). Plant-sourced EPSPS of Z. mays and E. indica conferred trans-
genic receptors the ability to withstand about 1900 mg ae L−1 glypho-
sate [12,29]. Glyphosate resistance level of transgenic rapeseed is
about 1700 mg ae L−1 [35]. Therefore glyphosate resistance in ELs-
EPSPS A. thaliana plants is equivalent to others deemed as of commercial
value indicating that this novel gene sourced from L. spicata is a poten-
tial new choice for crop transformation.
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