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Tenuazonic acid (TeA), belonging to tetramic acids that are the largest family of natural products, is a mycotoxin
produced bymembers of the genusAlternaria and other phytopathogenic fungi. TeA hasmanydesirable bioactiv-
ities. In the past two decades, several studies have addressed its phytotoxic activity. Because it can cause brown
leaf spot and kill seedlings of mono- and dicotyledonous plants, TeA is regarded as a potential herbicidal agent.
TeA blocks electron transport beyond QA by interacting with D1 protein and is a PSII inhibitor. The chloroplast-
derived oxidative burst is responsible for TeA-induced cell death and plant necrosis. Based on the model of mo-
lecular interaction between TeA andD1protein, a series of its derivativeswith stable herbicidal activity have been
designed, evaluated and patented. Recently, some chemical synthetic approaches of TeA and its derivatives have
been successfully developed. This paperwillmainly focus on newdevelopments regarding TeA's herbicidal activ-
ity, mode of action, biosynthesis and chemical synthesis, and characterization of new derivatives.
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1. Introduction

Tetramic acid based on the core structural unit of pyrrolidine, is a
common motif among natural products (Fig. 1a). Because of their
wide variety of bioactivities, naturally occurring tetramic acid deriva-
tives have attracted interest from chemists, physicians and biologists
[1–5]. Many tetramic acid derivatives have been patented as antimicro-
bial compounds [6–8], pesticides [9–11], and medical agents [12–13].

As one of the best characterized tetramic acid natural products,
tenuazonic acid (TeA, (5S)-3-acetyl-5[(2S)-butan-2-yl]-4-hydroxy-
1,5-dihydro-1H-pyrrol-2-one, CAS Registry No. 610-88-8, Fig. 1b) has
been isolated from several phytopathogenic fungal species including
Phoma sorghina, Magnaporthe oryzae, Aspergillus spp. and Alternaria
spp., particularly from Alternaria alternata, A. longipes and A. tenuissima
[14–20]. TeA is the most toxic of the Alternaria toxins. Since it was first
isolated in 1957 from culture filtrates of A. tenuis [21], TeA has also
been found in many plant materials, such as olives, cotton (seeds and
bolls), sunflower seeds, peppers, tobacco seeds, sorghum kernels, rice,
wheat, barley and oats aswell as some fruits including apples, tomatoes,
blueberries, lemons and oranges [17,22–23]. For a long time,most stud-
ies on TeA just focused on its sources, toxicity to animals, and pharma-
ceutical activities (e.g. antitumor, antiviral and antibiotic properties).
Davies and his co-workers reported that TeA is toxic to chicken embryos
and can cause haemorrhage and death in mice [24]. However, TeA also
possesses antitumor and protective potential against polycyclic aromat-
ic hydrocarbon induced skin carcinogenesis in mice [25]. TeA seems to
inhibit protein biosynthesis on ribosomes by suppressing the release
of new protein in eukaryotic cells [26]. Additionally, TeA isolated from
Alternaria raphani and A. brassicicola cultures is an inhibitor of the bacte-
rium Paenibacillus larvae [27]. As a result of its wide distribution and
possiblemammalian toxicity, several countries have established regula-
tory limits on the TeA concentration in food and feed. To ensure that the
potential health risk for humans and animals posed by TeA is kept as
low as practical, fast and reliable analytical methods for detection and
quantitation of TeA have been developed to routinely monitor the
food and feed industries [28–29].

However, in the past two decades, a steadily increasing number of
studies have paid attention to the phytotoxicity exhibited by TeA. TeA
weakly inhibits the activity of p-hydroxyphenylpyruvate dioxygenase
[30] and the elongation of seedling root and shoot [31–33]. High con-
centrations of TeA lead to a significant increase in the multi-nucleolus
ratio of Vicia faba root tip cells [34]. In our laboratory, large numbers
of studies about TeA have been conducted in the past 20 years to devel-
op a new type of microbial herbicide. This review summarizes our
knowledge on TeA as a potential herbicide including its herbicidal activ-
ity, mode of action, biosynthesis and chemical synthesis as well as those
of its derivatives.

2. Discovery of herbicidal activity

In the 1990s, A. alternata was first identified as a natural enemy of
croftonweed (Ageratina adenophora), a worldwide invasive weed. Sub-
sequently, Qiang et al. (1999) found that both conidia and mycelia of
this fungus isolated from croftonweed possessed the potential for bio-
logical control [35]. Mycelia fragments blended with culture media
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Fig. 1. The structure of tetramic acid (a), tenuazonic acid (b), 3-acetyl-5-isopropyltetramic acid (c) and derivatives of tenuazonic acid (R = –CH3, –CH2 (C6H5) or –CH2COOH) (d).
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were particularly effective in quickly killing theweed [35–36]. Ametab-
olite produced byA. alternata, namedAAC-toxin,mainly contributes this
effectiveness [37–39]. The crude extract of AAC-toxin leads to ion leak-
age, production of reactive oxygen species (ROS), lipid peroxidation and
chloroplast destruction of A. adenophora leaf tissues [40–41]. Bioassay
results indicate AAC-toxin has toxic activity on a wide range of hosts
from weed species to cultivated plants. It causes brown leaf spot and
kills seedlings of mono- and dicotyledonous plants [40,42]. Field trials
demonstrated high herbicidal activity of the AAC-toxin has on several
species including A. adenophora, Digitaria sanguinalis, Echinochloa
crusgalli, Amaranthus retroflexus and Eclipta prostrata. When AAC-toxin
is applied post emergence at 83 ml ai/ha, N95% of large crabgrass,
barnyardgrass, and redroot pigweed plants are controlled 2 days after
treatment [39]. Obviously, the AAC-toxin has the potential to be devel-
oped as a new herbicide and was patented in China for this purpose
[43]. Comprehensive experiments of substance isolation, purification
and structure identification determined that the main active ingredient
of AAC-toxin is tenuazonic acid [44–45]. Purified TeA also exhibits
broad-spectrum herbicidal activity. Among 46 plant species tested,
only tobacco, cotton and Abutilon theophrasti were tolerant to TeA
[46]. TeA has also potential for controlling the serious invasive alien
weed Alternanthera philoxeroides since it could decrease its growth,
number and length of roots, and fresh weight [47]. Consequently, TeA
is a suitable herbicide candidate with selectivity to tobacco and cotton,
as well as for total postemergence control.

There are reports that natural TeA has acute oral toxicity with LD50
of around 200mg/kg bodyweight [17]. On the basis of theWorld Health
Organization Recommended Classification of Pesticides by Hazard, this
means natural TeA is moderately hazardous. However, synthetic TeA
was demonstrated to be only slightly hazardous to rats in an acute tox-
icity study. Our documents show that synthetic TeA has acute oral tox-
icity with LD50 of female and male rat of 860 and 738 mg/kg
bodyweight, respectively. TeA has acute dermal toxicity with LD50 of
greater 2000 mg/kg bodyweight and acute inhalation toxicity with
LC50 of higher 2000mg/m3. Moreover, TeA did not cause either eye irri-
tation in rabbits nor skin irritation and sensitization in Guinea pigs (data
not shown). Such toxic level of TeA is considered acceptable for a post-
emergence herbicide. In fact, the formulation developed usingwhatever
natural or synthetic TeA is just slightly hazardous to animal (data not
shown). At N100 μgmL−1 concentrations, TeA inhibited the cell growth
and chlorophyll content of Chlamydomonas reinhardtii. Themicronucle-
us test results indicated that micronucleus frequency is N15‰ only at
higher concentrations. TeA inhibited the proliferation and total protein
contents of 3T3 mouse fibroblasts (3T3 cells), Chinese hamster lung
cells (CHL cells) and human hepatocytes (L-O2 cells) at concentrations
ranging from 12.5–400 μg mL−1 [48]. Field degradation experiments
of TeA determined a half life of TeA of only about 3.2 days in soil and a
residual period of about 20 days. Higher soil water content and temper-
ature promotes the degradation of TeA [49].

TeA exhibits broad spectrum, rapid and high herbicidal activity as
well as desirable low animal toxicity and low residuality. Thus, this my-
cotoxin has the potential to be developed as a herbicide. Moreover, the
method of controlling weeds using TeA has been already patented in
China [50] and Japan [51].

3. Mode of action

3.1. Target site of TeA

Early studies showed that TeA blocked photosystem (PS) II electron
transport activity and inhibited photosynthesis, but did not affect the
level and activity of RuBP carboxylases, photosynthetic pigment content,
thylakoid membrane protein and PSI electron transfer chain [52–53].
The TeA concentration required to inhibit PSII by 50% is about 200 μM
[54–55]. Studies on OJIP fast chlorophyll a fluorescence transients of
croftonweed and spinach leaves revealed that TeA interrupts electron
flow from QA (primary quinone acceptor) to QB (secondary quinone ac-
ceptor) at the PSII acceptor side, resulting in severe inactivation of PSII re-
action centers (RCs). The fraction of non-QA and non-QB reducing centers
had a time- and concentration- dependent linear increase. However, TeA
does not affect the antenna pigments, the energy transfer from antenna
pigment molecules to RCs, or the oxygen-evolving complex at the donor
side of PSII [54,56]. Competitive displacement experiments between
non-labeled TeA and [14C]atrazine demonstrated that TeA has an action
similar to the classical PSII triazine herbicide binding to the QB-site since
atrazine binding to QB-site could be prevented by TeA. Thismeans TeA in-
terrupts PSII electron transport from QA to QB by competing with QB for
the QB-niche in the D1 protein. However, the double-reciprocal plots of
the binding of [14C]atrazine in the presence of various TeA concentrations
indicate that the binding behavior of TeA is different from that of the tri-
azine herbicides. In other words, the binding of TeA to the QB-niche is de-
pendent on different amino acid residues than those identified for other
known PSII herbicides [54–55].

D1-mutants of C. reinhardtiiwere used to determine the amino acid
residues involved in TeA binding. A change of amino acid at 256 position
confers about 37 fold resistance to TeA, while D1-Ser264Ala and D1-
Phe255Tyr mutants have approximately 8 and 2 fold resistance of TeA,
respectively. Moreover, the ability of [14C]atrazine to compete for TeA
is weaker in the thylakoids of the D1-Gly256Asp mutant than the wild
type. Therefore the 256 amino acid plays a key role in the binding of
TeA to the QB-niche [54]. Additionally, TeA also can inhibit the activity
of chloroplastic ATPase and Fd-NADP+ reductase (FNR) [57].

The chemical structure of TeA shares a common characteristic group
N-C= X (where X is N or O) with the classical PSII herbicides. The pro-
tein binding environment for PSII herbicides overlaps with that for QB.
D1-H215 and D1-S264 are likely to provide hydrogen bonds to the car-
bonyl and amide groups of diuron, respectively [58]. However, it is sug-
gested that classical PSII herbicides (diuron, atrazine and terbutryn)
orient themselves preferentially towards Ser264 of the D1 protein,
and the binding of phenolic herbicides (e.g. ioxynil and dinoseb) occurs
via His215 [59–60]. Bioassays of TeA and its synthetic derivatives,which
differ only in side chain at the 5-position, suggests that the pyrrole ring
containing N\\C_O group is a core part for photosynthetic inhibiting
activity. Furthermore, there is an important relationship between
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biological activity and the character of the side chain in the 5-position of
the TeA derivatives. The presence of the hydrophobic group (alkyl side
chain) in the 5-position for TeA and its derivatives is important for
their high inhibitory potency. The photosynthetic inhibiting activity in-
creases with increasing length of the side chain [54,61].

A molecular interaction model built on the basis of these findings
and a previous model [54,58,62] proposes that TeA is located in the QB

binding niche, which is a hydrophobic pocket formed by D1 residues
from Phe211 to Leu275 and D2 residues from Glu219 to Ala260. TeA
head group (pyrrolidone ring) binds in the pocket and the butyl side
chain at 5-position is fixed hydrophobic environment in the lumen
under the pocket. In the interaction between TeA and the QB-site, D1-
G256 residue may provide a hydrogen bond with the carboxyl in 2-
position of TeA thus also playing important role where as D1-S264
and D1-F255 residues may be only of marginal importance; then D1-
V219 and D1-L275 residues may not be necessary at all [54]. It is clear
that TeA and its derivative 3-acyl-5-alkyltetramic acids provide a
novel structural framework of a potential group of photosynthesis
inhibitors.

3.2. Action mechanism of TeA-induced plant leaf necrosis

In plant cells photoinhibitory damage of PSII can result in the forma-
tion ROS [63–64]. Histochemical analyses showed the accumulation of
high levels of H2O2 and O2•− in cottonweeds leaf tissues within 6 h
after treatment with 250 μM TeA. Based on laser-scanning confocal mi-
croscopy and subcellular localization experiments with CeCl3 staining,
the primary site of TeA-induced ROS generationwas located to the chlo-
roplasts of mesophyll cells. Electron Spin Resonance and ROS scavenger
experiments also revealed that TeA-induced ROS produced in chloro-
plasts include 1O2, •OH, O2•− and H2O2 [57]. This also differentiates
TeA from classical PSII herbicides that mainly induce 1O2 production in
chloroplasts [65]. Interestingly, the PSI herbicide paraquat exerts its cel-
lular toxicity by generating O2•− as well as •OH in chloroplasts [66]. The
initial generation of TeA-induced ROS is restricted to chloroplasts and is
not accompanied by visible oxidative damage to other cellular organ-
elles or compartments. Four hours later, abundant ROS are dispersed
throughout whole cells and cellular compartments, causing irreversible
cellular damage such as chlorophyll breakdown, lipid peroxidation,
plasma membrane rupture, chromatin condensation, DNA cleavage,
and organelle disintegration that finally result in rapid cell destruction
and leaf necrosis. Thus TeA-induced plant cell necrosis is a result of di-
rect oxidative damage from the chloroplast-derived ROS burst, resulting
from electron leakage and charge recombination in PSII aswell as thyla-
koid over-energization due to inhibition of the PSII electron transport
beyond QA and the reduction of end acceptors on the PSI acceptor side
and chloroplast ATPase activity [57].

Recent studies indicate that TeA-induced 1O2 activates a signaling
pathway that depend on the two EXECUTER (EX) proteins, EX1 and
EX2 and triggered a programmed cell death response. In Arabidopsis
seedlings treated with TeA at half-inhibition concentration 1O2-
mediated and EX-dependent signaling is activated as indicated by the
rapid and transient up-regulation of 1O2-responsive genes in the wild
type and its suppression in ex1/ex2mutants. Lesion formation only oc-
curs when seedlings are exposed to higher concentrations of TeA for
three days. In this case, the programmed cell death response triggered
by 1O2-mediated and EX-dependent signaling is superimposed by
other events that also contribute to lesion formation [67]. This is impor-
tant to further understand the mechanism of interaction between the
TeA mycotoxin and its host plants. The research is also helpful to pro-
mote the commercial process of TeA as a new herbicide.

4. Biosynthesis of TeA

Tetramic acids are typical hybrid secondary metabolites originating
from polyketide and α-amino acid precursors that are built up and
connected by the concerted actions of polyketide synthases (PKSs)
and non-ribosomal peptide synthetases (NRPSs) [3]. There are two
types of fungal PKSs. One is an iterative type I PKSs, consisting of multi-
ple catalytic domains that contain ketosynthase (KS), acyltransferase
(AT) and acyl carrier protein (ACP) main domains, along with several
optional β-keto processing domains, such as β-ketoacyl reductase,
dehydratase and trans-acting enoyl reductase domains in a single en-
zyme. The other one is type III PKSs, consisting of a homodimeric KS
[68–70]. PKSs recognize and use acetyl-CoA as a starter unit derived
from primary metabolic pools to synthesize polyketide [71]. The NRPS
portion consists of adenylation, thiolation, condensation and terminal
release or cyclization domains, which is in charge of synthesis of non-
ribosomal peptides [72]. In general, fungal tetramic acids are assembled
by PKS-NRPS hybrid enzymes, whose structure consists of an iterative
PKS followed by a single module NRPS [3]. With the rapid development
of fungal whole-genome projects, additional secondary metabolite
genes including a high number of PKS and NPRS genes have been iden-
tified [73–76]. This will provide further insight into tetramic acid bio-
synthesis and the mechanisms that regulate their production in fungi.

As a well-known tetramic acid, TeA is also expected to be a product
of a PKS-NRPS hybrid enzyme [77]. In fact, TeA has been thought to be a
hybrid of an isoleucine and two acetate molecules in A. tenuis based on
feeding experiments with radioactive precursors [78–79]. The TeA bio-
synthetic gene from M. oryzae was first identified by finding two TeA-
inducing conditions of a low-producing strain. TeA is synthesized from
isoleucine and acetoacetyl-coenzyme A by TeA synthetase 1 (TAS1),
which is a unique NRPS-PKS hybrid enzyme that begins with an NRPS
module. The PKS portion of TAS1 has only a KS domain and this domain
is indispensable for TAS1 activity. Phylogenetic analysis classifies this KS
domain as an independent clade close to type I PKS KS domain,
conducting the final cyclization step for TeA release [80]. TAS1 is the
first reported fungal NRPS-PKS enzyme thus far. This may explain why
the biosynthetic gene of mycotoxin TeA has remained unknown for so
long. Current knowledge still limits our understanding of the mecha-
nism of PKS-NPRS in TeA biosynthesis in different fungus species.

5. Chemical synthesis of TeA and its derivatives

The chemical structure of TeA suggests that the tetramic acid core
(pyrrolidinedione) originates from a variety of amino acids, typically
displaying chirality at the C5 position. Some representative chemical
synthetic methods of tetramic acid have been listed in several reviews
[1,3,5,81]. Schobert et al. (2004) first reported the use P-ylide reactions
of polymer-bound Ph3P_C_C_O to quickly synthesize TeA in the lab-
oratory. Briefly, polystyrene-bound cumulated ylide Ph3PCCO is pre-
pared on a large scale in two steps. It reacts with Grignard
compounds, amines and alcohols to give immobilized acyl, amide and
ester ylides, respectively. Their Wittig reactions lead to alkenes free of
phosphane oxide. Optically pure 5-substituted tetramates are obtained
from reactions of resin-bound Ph3PCCO with α-ammonium esters in
one step. TeA is accordingly prepared in just three steps [82]. Neverthe-
less, the approach could not be applied in industry production of TeA
because of the unavoidable environmental pollution associated with
P-ylide reactions.

Yang et al. (2008) provides a new strategy for the synthesis of TeA
and iso-TeA (3-acetyl-4-hydroxy-5-isobutyl-1,5-dihydro-1H-pyrrol-2-
one) using L-isoleucine and leucine as starting materials under mild re-
action conditions [83]. The entire synthesis procedure includes five
steps, esterification by alcohol, neutralization by sodium alcoholate,
acidylation by diketene, cyclization and acidification,which are finished
continuously in the presence of sodium alcoholate in a single reaction
vessel. The intermediate product is directly used without further purifi-
cation (Fig. 2). Furthermore, this approach does not require highly func-
tionalized starting materials and harsh heating conditions, and is also
safe and suitable for the large scale production of TeA of high quality
in large quantities. Indeed based on this method TeA and a series of its



Fig. 2. Synthetic route of TeA using natural L-isoleucine as initial material. Tenuazonic acid
(R group is sec-butyl), isotenuazonic acid (R group is isobutyl) [83].
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derivatives with stable bioactivity were synthesized using different
amino acids as parent materials [84–88].

According to the molecular interaction modeling between TeA and
target D1 protein, a number of 3-acetyl-tetramic acids were designed
and synthesized by modification of the TeA's side chain group at 5-
position. These compounds have remarkably inhibitory activity on PSII
electron transport and considerable herbicidal activity [61]. For exam-
ple, 3-acetyl-5-isopropyltetramic acid (3-AIPTA) (Fig. 1c) synthesized
from l-valine as precursor, differs only in the 5-position side chain,
where 3-AIPTA has an isopropyl group while TeA has a sec-butyl
group. Both 3-AIPTA and TeA share the same target site and lethal
mechanism on weeds [89–90] although 3-AIPTA has weaker herbicidal
activity. Another TeA-analog with a single carbon alkyl side chain at the
5 position (Fig. 1d) has even less phytotoxic activity than 3-AIPTA. This
is attributed to its shorter side chain at 5-position [54]. Conversely, TeA-
derivatives with a phenyl side chain (Fig. 1d) or hydrogen-group
(Fig. 1d) at 5-position did not have inhibiting activity on plant growth
and photosynthesis. It is probable that the phenyl group is too large to
fit into the pocket of D1 and that the hydrophilic side chain is not suit-
able to such hydrophobic pocket [54].

6. Summary and outlook

The mycotoxin TeA is a broad-spectrum and effective PSII herbicide
agent. Recently, a TeA micro-emulsion at 25% formulation was success-
fully developed and granted a Certificate of Pesticide Field Trail by the
Institute for the Control of Agrochemicals, Ministry of Agriculture, P.R.
China (ICAMA). Field performance supports TeA as a potential
bioherbicide. However, several challengesmust be overcome for its suc-
cessful commercialization. First, TeA easily changes conformation under
different environmental pH, temperature and medium solution, which
will significantly affect its herbicidal activity. To date, this problem
with TeA is still insurmountable. Second, methods and procedures
should be designed and optimized for an economically viable produc-
tion of TeA. Previous investigations indicate that biosynthesis by liquid
fermentation is the optimal choice to produce high bioactive TeA, but
its yield remains too low for industrial application. Research is under-
way focusing on TeA biosynthesis pathway and toxin-producing related
genes of A. alternata to create high-yielding toxin engineered strains. Al-
though high yield TeA synthesis can be achieved directly using L-
isoleucine as the starting material, the current cost of L-isoleucine pre-
cludes its implementation.Moreover, the herbicidal activity of synthetic
TeA is half lower relative to natural TeA. Finally, a mandatory detection
of TeA as an unavoidable contaminant in food and feed due to its health
concerns prevent its commercial development as a herbicide [28–29].

Future research should aim to identify and exploit new highly active
TeA derivatives with an adequate toxicological and environmental pro-
file than can be produced at a reasonable cost. To achieve this goal, it is
necessary to build a library of derivates based on the core scaffolds of
natural TeA. We have found that several candidates with a longer
alkyl side chain at 5-position are better suited for tight binding in D1
protein and have a higher herbicidal activity compared to TeA. Further-
more, two of these new derivatives show slighter animal toxicity than
the toxicity of TeA. Thus it is possible to design and synthesizemore de-
rivatives with high herbicidal activity and low toxicity using TeA as a
template that are attractive for commercialization, and finally develop
new patented herbicides instead of TeA.
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